HIV-1 Nucleocapsid Mimics the Membrane Adaptor Syntenin PDZ to Gain Access to ESCRTs and Promote Virus Budding.
نویسندگان
چکیده
HIV-1 recruits cellular endosomal sorting complexes required for transport (ESCRTs) to bud virions from the membrane. Disruption of the viral nucleocapsid (NC) domain integrity affects HIV-1 budding. However, the molecular mechanisms of NC's involvement in HIV budding remain unclear. We find that NC mimics the PDZ domains of syntenin, a membrane-binding adaptor involved in cell-to-cell contact/communication, to capture the Bro1 domain of ALIX, which is an ESCRTs recruiting cellular adaptor. NC binds membranes via basic residues in either the distal or proximal zinc fingers, and NC-membrane binding is essential for Bro1 capture and HIV-1 budding. Removal of RNA enhances NC membrane binding, suggesting a dynamic competition between membrane lipids and RNA for the same binding sites in NC. Remarkably, syntenin PDZ can substitute for NC function in HIV-1 budding. Thus, NC mimics syntenin PDZs to function as a membrane-binding adaptor critical for HIV-1 budding at specific microdomains of the membrane.
منابع مشابه
The PDZ-adaptor protein syntenin-1 regulates HIV-1 entry
Syntenin-1 is a cytosolic adaptor protein involved in several cellular processes requiring polarization. Human immunodeficiency virus type 1 (HIV-1) attachment to target CD4(+) T-cells induces polarization of the viral receptor and coreceptor, CD4/CXCR4, and cellular structures toward the virus contact area, and triggers local actin polymerization and phosphatidylinositol 4,5-bisphosphate (PIP(...
متن کاملSyntenin mediates Delta1-induced cohesiveness of epidermal stem cells in culture.
In human interfollicular epidermis, stem cell clusters express high levels of the Notch ligand Delta1. Delta1 stimulates neighbouring cells to differentiate and also promotes stem cell clustering. Although Notch signalling is known to stimulate epidermal differentiation, little is known about the mechanism by which Delta1 promotes epidermal cell cohesiveness. This is an important issue, because...
متن کاملAfter Hrs with HIV
To efficiently bud off from infected cells, HIV and other enveloped viruses hijack the host cellular machinery that is normally involved in vacuolar protein sorting and multivesicular body (MVB) biogenesis. The HIV Gag protein mimics hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs), a modular adaptor protein that links membrane cargo recognition to its degradation after delive...
متن کاملInsulin-like growth factor II mRNA binding protein 1 associates with Gag protein of human immunodeficiency virus type 1, and its overexpression affects virus assembly.
The assembly of human immunodeficiency virus type 1 (HIV-1) particles is driven by viral Gag protein. This function of Gag not only benefits from its self-multimerization property but also depends on its interaction with a number of cellular factors such as TSG101 and ALIX/AIP1 that promote virus budding and release from cell surfaces. However, interaction with Gag also allows some cellular fac...
متن کاملESCRTs are everywhere.
The ESCRT proteins are an ancient system that buds membranes and severs membrane necks from their inner face. Three "classical" functions of the ESCRTs have dominated research into these proteins since their discovery in 2001: the biogenesis of multivesicular bodies in endolysosomal sorting; the budding of HIV-1 and other viruses from the plasma membrane of infected cells; and the membrane absc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell host & microbe
دوره 19 3 شماره
صفحات -
تاریخ انتشار 2016